A Hybrid Ant Colony Algorithm for Quadratic Assignment Problem

نویسنده

  • Guo Hong
چکیده

Quadratic assignment problem (QAP) is one of fundamental combinatorial optimization problems in many fields. Many real world applications such as backboard wiring, typewriter keyboard design and scheduling can be formulated as QAPs. Ant colony algorithm is a multi-agent system inspired by behaviors of real ant colonies to solve optimization problems. Ant colony optimization (ACO) is one of new bionic optimization algorithms and it has some characteristics such as parallel, positive feedback and better performances. ACO has achieved in solving quadratic assignment problems. However, its solution quality and its computation performance need be improved for a large scale QAP. In this paper, a hybrid ant colony optimization (HACO) has been proposed based on ACO and particle swarm optimization (PSO) for a large scale QAP. PSO algorithm is combined with ACO algorithm to improve the quality of optimal solutions. Simulation experiments on QAP standard test data show that optimal solutions of HACO are better than those of ACO for QAP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Ant System Algorithm for Solving Quadratic Assignment Problems

-In this paper a hybrid variant of meta-heuristic algorithm ant colony optimization (ACO) is used. Approximate solutions to quadratic assignment problem have been proved very efficient. Different variants of ant colony optimization have been applied to QAP. But in this paper a hybrid approach is proposed which is combination of Ant system and Max-Min Ant system to take benefits of both the meth...

متن کامل

Hybrid Population-Based Algorithms for the Bi-Objective Quadratic Assignment Problem

We present variants of an ant colony optimization (MO-ACO) algorithm and of an evolutionary algorithm (SPEA2) for tackling multi-objective combinatorial optimization problems, hybridized with an iterative improvement algorithm and the Robust Tabu Search algorithm. The performance of the resulting hybrid stochastic local search (SLS) algorithms is experimentally investigated for the bi-objective...

متن کامل

New Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem

Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...

متن کامل

Ant Colonies for the Quadratic Assignment Problem

This paper presents HAS-QAP, a hybrid ant colony system coupled with a local search, applied to the quadratic assignment problem. HAS-QAP uses pheromone trail information to perform modifications on QAP solutions, unlike more traditional ant systems that use pheromone trail information to construct complete solutions. HAS-QAP is analysed and compared with some of the best heuristics available f...

متن کامل

A Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013